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Abstract

In this paper, we estimate a heat source in a longitudinal section during an electron beam welding. The aim of this work is the parameter
identification of the Gaussian source term representative of the dissipated heat flux in the liquid zone from measured temperatures in the solid
zone. In a previous work [J. Guo, P. Le Masson, E. Artioukhine, T. Loulou, P. Rogeon, M. Carin, M. Dumons, J. Costa, Estimation of a source
term in a two-dimensional heat transfer problem: Application to an electron beam welding, in: 4th Int. Conf. Inverse Problems, Russia, 2003], we
have analyzed the feasibility of the estimation for a source term S(x, z, t) in a transversal section. This work has an application in the electron
beam welding of steels of thickness about 8 cm. The direct thermo-metallurgical problem is presented in a two-dimensional longitudinal section
(x, y) for a quasi-steady state. This non-linear problem is considered in the thesis of J. Guo [J. Guo, Estimation de la distribution énergétique
induite par un faisceau d’électrons dans un matériau métallique – Application au cas du soudage d’un acier, Thèse de l’université de Bretagne
Sud, 2005]. Here, we solve only a linear case. The sample is divided in the axial direction z in few sections. At each section, a source term is
defined with a part of the beam and creates a vaporized zone and a fused zone. The goal of this work is the rebuilding of the complete source term
with the estimations at each section. In this paper, the feasibility of the parameter estimation by Levenberg–Marquardt method is analyzed.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Welding is an assembling operation which affects both me-
chanical and metallurgical properties and which is very sensi-
tive to the control parameters of the technological processes.
The first stage of this study is to choose parameters which lead
to an acceptable welding quality. The main difficulty of the the-
oretical analysis is that the exact distribution of the thermal
energy absorbed and generated in the liquid and vapor zones
is not easy to predict and cannot be measured directly. When
studying the welding, the theoretical analysis uses complemen-
tary experimental informations: the temperature measurements
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near the liquid zone and the microstructural properties (hard-
ness, optical micrography, etc.).

The objective of this work is the estimation of the energy
distribution in the welding zone. The problem is that there is a
strong damping effect in the solid zone. The reason of this effect
is related to a great difference in temperature between the weld
bead and the base metal. That is why it is difficult to estimate
correctly the energy distribution from the temperature measure-
ments located at points which are too far from the welding zone.

Many works deal with the estimation of boundary condi-
tions or the determination of the heat flux distribution on the
boundary of the workpiece [2–4]. Few of these works consider
experimental situations involving unknown heat sources. Silva
Neto et al. [5] used the conjugate gradient algorithm to estimate
the time-varying strength of a line source placed in a rectan-
gular region with insulated boundaries, but the location of the
source was specified. Le Niliot [6] studied linear inverse prob-
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Nomenclature

b constant of the austenite–martensite transformation
Cp,Cγ ,Cα specific heat . . . . . . . . . . . . . . . . . . . J kg−1 K−1

∂T /∂t variation of the temperature with time . . . . . K s−1

f (∂T
∂t

), f ( ∂T
∂y

) function of the cooling or warming speed
h penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
H,Hα,Hβ enthalpies . . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3

�Hfus,�Hvap enthalpies of the phase change . . . . . J kg−1

Ib, If current and focus current . . . . . . . . . . . . . . . . . . . . A
JPW

,JWFE , Jys sensitivity coefficients
J (P ) sensitivity matrix
Lαγ heat transformation of phase α to γ . . . . . . . J m−3

Ms martensite start temperature
PW,P 0

W,P k
W power of the source . . . . . . . . . . . . . . . W m−1

P,Peq proportion of metallurgic phase (per volume
fraction)

Pmax maximum proportion of the austenite phase during
the austenite–martensite transformation

Pα,Pγ proportion of the ferrite and austenite phase
S(x, z, t), S(x, ξ, t), S(x, y) source term
S(P ) residual functional
Tinf external temperature . . . . . . . . . . . . . . . . . . . . . . . ◦C

T ,T0 temperature in the sample and initial temperature
in the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C

t time coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
V velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

WFE,W 0
FE,Wk

FE parameter of the Gaussian source
x, y, z, ξ spatial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . m
XPW

,XWFE ,Xys normalized sensitivity coefficients
Y,Yi, Ye experimental temperatures . . . . . . . . . . . . . . . . . ◦C
ys, y

0
s , yk

s source position . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ε′ coefficient
ε emissivity of the sample
εstop arrest criterion
η efficiency coefficient
λ,λα,λγ conductivity . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

λ0, λk damping parameter
ρ,ρα,ργ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ Boltzmann constant: 5.67 × 10−8 W m−2 K−4

τ Time constant
ΦE beam diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ωk diagonal matrix
lems with two point heat sources, and experimental results were
presented in [7].

In many studies, the inverse fusion and solidification prob-
lem have been analyzed with a simplified approach only based
on a conduction model in the liquid and vapor zones. Under
these assumptions, 1D or 2D Stefan problems taking into ac-
count only the conduction effects in all the phases during the
process were considered. The objective was to estimate an en-
ergy distribution [4], or a motion of the solid–liquid interface
[8–11]. Another approach which takes into account the con-
vection effects described by the Navier–Stokes equations in the
liquid and vapor zones, was used in [12]. Finally, mixed ap-
proaches in which an apparent source term is determined in the
liquid and vapor zones representing the different phenomena,
were utilized in [13].

In this paper, we use the first assumption for the electron
beam welding process. We consider only the conduction ef-
fects for all phases (solid, liquid and vapor). The Levenberg–
Marquardt method [14,15] is used to estimate the parameters
of the dissipation energy in the liquid and vapor zones. First,
we present the electron beam welding technique and the used
steel sample. Second, the direct problem is described with the
description of the Gaussian heat source distribution. Third, sen-
sitivity analysis is investigated for each parameter which we
want to estimate. Fourth, the estimation procedure is described
and numerical cases are studied. At last, the estimation results
are discussed for experimental and numerical data.

2. The electron beam welding process

The electron beam (EB) welding is an assembling process
in vacuum using a high density energy beam. This technology
Fig. 1. Welding process and studied domain.

allows the welding of the high thicknesses (up to 16 cm) with
a low width and a narrow Heat Affected Zone (HAZ). At the
beginning of the welding process, the high power density of
the electron beam leads to an evaporation of the material and
then to a keyhole (Fig. 1). It is this moving keyhole which gen-
erates the welded joint. The high penetration capacity of the
beam with a narrow fusion zone characterizes the electron beam
welding in comparison with other welding technologies. For
these other methods, the penetration is limited by the heat con-
duction [16].

The weld joints are realized at the DCN-propulsion (power
of this electron beam: 100 kW). The workpieces are made with
18MnNiMo 5 steel plates (equivalent to ASTM A508 Cl.3 in
USA). In our study, a partial penetration welded joint is ana-
lyzed. Fig. 2 shows the micrography of this sample which is
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Fig. 2. Weld Joint (dimensions in mm).

used to determine precisely the locations of the measurement
points by using a macrography of this welding joint. The weld-
ing parameters are: voltage: U = 60 kV, current Ib = 0.29 A,
velocity V = 2.5 mm s−1, focus current If = 2.46 A, etc. The
paper of Carin et al. [17] presents an example of the experimen-
tal parts.

The high temperature level in the fusion and vapor zones
does not permit the installation of the thermocouples in these
zones. The used thermocouples (d = 50 or 80 µm; K type,
C type or S type) are thus located in the HAZ (750 ◦C < T <

1450 ◦C).

3. The direct heat conduction problem

3.1. Equations of the direct problem

Several works are concerned with the numerical simulation
of the EB welding in our laboratory [17,18,21]. In these works,
the commercial code SYSWELD [19] and a new code analo-
gous to SYSWELD which is incorporated in the optimization
code developed were used. The studied domain is one half of
the longitudinal section taken perpendicularly to the beam axis
(Fig. 1). In a transient description, the equations are the heat
conduction equation (1) and the metallurgical kinetic equa-
tions (2) of the Leblond and Devaux and Koistinen and Mar-
burger type [1]

C(T )
∂T

∂t
= ∂

∂x

(
λ(T )

∂T

∂x

)
+ ∂

∂ξ

(
λ(T )

∂T

∂ξ

)

+ dPα

dt
Lαγ (T ) − ∂(ρH)

∂t
+ S(x, ξ, t) (1)

dP

dt
= Peq − P

τ
f

(
dT

dt

)
and

P = Pmax
(
1 − exp

(−b(T − Ms)
))

(2)

In Eq. (1), the thermophysical characteristics C(T ) =
c(T )ρ(T ) and λ(T ) are calculated by a law of mixture accord-
ing to the temperatures.

C(T ) = Pαcα(T )ρα(T ) + Pβcβ(T )ρβ(T )

and

λ(T ) = Pαλα(T ) + Pβλβ(T )
with Pα and Pβ the proportional phases obtained from Eq. (2).
A Continuous Cooling Temperature (C.C.T.) diagram is used
for the definition of the parameters in Eq. (2). At each node
of the grid, the temperature and the cooling speed or the heat-
ing speed are used to obtain the proportion of phases. In the
heat conduction equation (1), the source terms dPα

dt
Lαγ (T ) and

∂(ρH)
∂t

allow to take into account the phase change enthalpy
according to the temperature of the sample (metallurgical trans-
formations for the first term Pα is the proportion of metallurgic
phase α, fusion and evaporation for the second). The transfor-
mation energy is calculated according to the phase enthalpy:
Lαγ (T ) = ργ Hγ − ραHα and by considering two metallurgi-
cal phases only: γ (austenite) and α (ferrite, perlite, bainite
or martensite). The enthalpies of the phases α and γ are com-
puted with the use of polynomial functions between 100 ◦C and
1450 ◦C. The other thermal transformations are computed be-
tween 1450 ◦C and 1550 ◦C for the fusion and between 2600 ◦C
and 2800 ◦C for the evaporation. These enthalpies are given in
Costantini work [16]: �Hfus = 391970 J kg−1 and �Hvap =
6332879 J kg−1. At last, the thermophysical characteristics of
the liquid and vapor phases are computed at the temperature
1450 ◦C.

The boundary and initial conditions are the following: at the
lateral surfaces, only the radiative conditions are fixed because
the welding process is carried out in vacuum. For example at
the lateral surface in x = xmax, the boundary condition is:

−λ(T )
∂T (xmax, ξ, t)

∂x
= εσ

[
T 4(xmax, ξ, t) − T 4

inf

]
(3)

On the axis:

∂T (x = 0, ξ, t)

∂x
= 0 (4)

Initial conditions:

T (x, y,0) = T0; Pα(x, y,0) = 1 (5)

For this study, we use a quasi stationary problem and we
define a moving coordinate system (x, y), where y = ξ + V t .
In the stationary regime ( ∂T

∂t
= 0), the heat conduction equation

and the metallurgical kinetic equations become (6) and (7):

V C(T )
∂T

∂y
= ∂

∂x

(
λ(T )

∂T

∂x

)
+ ∂

∂y

(
λ(T )

∂T

∂y

)

+ V
dPα

dy
Lαγ (T ) − V

∂(ρH)

∂y
+ S(x, y) (6)

V
dP

dy
= Peq − P

τ
f

(
dT

dy

)
and

P = Pmax
(
1 − exp

(−b(T − Ms)
))

(7)

For this new problem, we take only a part of the longitudi-
nal section. The boundary conditions in the beam direction “y”
change and we set these new conditions:

at y = ymin T = T0 (8)

at y = ymax
∂T

∂y
= 0 (9)
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Fig. 3. Studied section and measurement locations.

For the conditions in the transverse direction “x”, we have
the same boundary conditions. Fig. 3 shows the study section
with the new conditions.

In Eq. (6), the term S(x, y) is the source term which rep-
resents the energy of the electron beam. The Gaussian source
term corresponds to several studies carried out in our labora-
tory [18]:

S(x, y) = f (ze) ∗ 8ηUIb

πΦ2
E

exp

(
−8(x2 + (y − yS)2)

Φ2
E

)

with f (ze) = 2

h

(
1 − ze

h

)
(10)

where the parameters are: efficiency coefficient η = 0.9, volt-
age: U = 60 kV, current: Ib = 0.29 A, velocity: V =
2.5 mm s−1, penetration: h = 71 mm, beam diameter: φE =
1 mm and ze: the depth of the longitudinal section.

The goal of this study is the estimation of the parameters de-
scribing the source term by the Levenberg–Marquardt method.
So, first, the source term which has been presented above is de-
fined mainly by three parameters (PW ,WFE, yS):

S(x, y) = PW

W 2
FE

exp

(
−

(
x2 + (y − yS)2

W 2
FE

))
(11)

where PW is the power of the electron beam, WFE , equal to√
φ2

E/8, is the parameter of the Gaussian source and yS is the
position of the source in this quasi-steady problem. Second, we
analyze only a linear problem without metallurgical transfor-
mations and with constants thermophysical characteristics.

3.2. Numerical resolution of the direct problem

To solve the direct problem, we need to define the value of
the parameters of the model. So, the thermophysical parameters
are taken constant: ρ = 7500 kg m−3, Cp = 520 J kg−1 K−1,
λ = 32 W K−1 m−1 and ε = 0.8. The parameters values of the
Gaussian source are estimated as following:

• PW = 2
h

(
1 − ze

h

)( ηUI
π

)
with ze = 0.041 m, h = 0.071 m,

η = 0.9, U = 60 kV and Ib = 0.29 A lead to PW ≈
60 kW m−1;

• yS = 0.015 m;

• WFE =
√

φ2
E/8 with φE = 1 mm the experimental beam

diameter gives WFE = 3.53 × 10−4 m.
Fig. 4. Comparison between measured and calculated temperatures.

The spatial domain is defined as: ymin = 0 m, ymax = 0.08 m,
xmin = 0 m and xmax = 0.03 m. The choice of these values has
been validated in the paper of Rogeon et al. [17] in the trans-
verse direction (O �x) where in the linear case, effects due to
the boundary domain are insignificant above x � 20 mm. In
the longitudinal direction (O �y), the experimental and calcu-
lated kinetics tend to horizontal (∂T /∂y = 0) for y � 80 mm.
The meshgrid of the domain is defined by 4133 nodes and
the number of triangular elements is 7862. The minimum area
is 4.73 × 10−10 m2 near the source and the maximum area
is 3.58 × 10−6 m2 for elements far away from the source.
A quadratic Lagrangian finite element are used in this mesh.
An iterative method is employed to solve the problem by using
the Good Broyden Solver with the incomplete LU precondi-
tioner. These results are computed using Femlab 2.3 finite el-
ement code. Fig. 4 presents the calculated temperature at four
different positions: x = 0 mm, 2.5 mm, 5 mm and 10 mm and a
comparison between measured temperature at x = 2.5 mm.

At x = 2.5 mm, the maximum temperature calculated is in-
ferior to the temperature of melted steel (Tf ∼ 1450 ◦C). For
the experimental conditions, the temperature acquisition seems
to be difficult in the melted zone. In this study, the thermocou-
ple K is employed due to their sensitivity and their measure-
ment scale which is limited punctually at a maximum temper-
ature of 1300 ◦C. That is why, measurements are possible in
the Heat Affected Zone (HAZ) at abscissa x = 2.5 mm (ex-
perimentally measurements are taken between x = 2 mm and
x = 3 mm).

In Fig. 4, at x = 2.5 mm, some differences between the cal-
culated and measured temperatures at the same abscissa are
observed. The experimental temperature evolution is larger, the
position of the source seems to be different but the power is
quite the same with similar maximum temperatures. The ex-
perimental and calculated thermal cycles are similar during the
cooling phase for y � 20 mm. These differences are related
to the thermophysical characteristics which are assumed con-
stants.

So, for the estimation of the unknown parameters: PW , WFE

and yS , we have developed an inverse approach.
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4. The inverse problem of the parameter estimation

4.1. The Levenberg–Marquardt method

The inverse problem consists in the minimization of a
quadratic functional (or cost function) S(P ) where P =
{PW,WFE, yS} is the set of unknown parameters. The solu-
tion of the inverse problem is obtained when the minimization
of the difference between the calculated and measured temper-
atures (in the sense of the least square method) is realized.

The expression of this quadratic functional is:

S(P ) = [Yi − Ti]T[Yi − Ti] (12)

where Yi are the measured temperatures and Ti the calculated
temperatures taken at abscissa x = 2.5 mm from the line source
position (Fig. 4). i = 1, . . . , I is the number of the measure-
ment points: [Yi − Ti]T = [Y1 − T1, Y2 − T2, . . . , YI − TI ]. The
subscript T denotes the transpose.

The method used to solve this inverse problem is the
Levenberg–Marquardt method. This method is useful when the
number of the parameters to identify is low (typically less than
5 . . .). This technique is an iterative method for solving non-
linear least squares problems of the parameter estimation [20].
The Levenberg–Marquardt method has been applied to the so-
lution of a variety of inverse problem involving the estimation
of unknown parameters [14,15,20].

The Levenberg Marquardt method consist in correcting the
unknown set of parameters by the following formula:

P k+1 = P k + [(
J k

)T
WJk + λkΩk

]−1

× [(
J k

)T
W(Ti − Yi)

]
(13)

where λk is a positive scalar named damping parameter and Ωk

is a diagonal matrix. The goal of the term λkΩk is to damp
the oscillations and instabilities due to the ill-conditioned char-
acter of the problem. This damping parameter is large at the
beginning of the iterative procedure (and the method is like the
steepest descent method) then it decreases when the procedure
advances to the solution (and the method tends to the Gauss
method). W is a diagonal matrix where the diagonal elements
are given by the inverse of the standard deviation of the mea-
surement errors. The sensitivity matrix J (P ) is written as:

J (P ) =

⎡
⎢⎢⎢⎢⎣

∂T1
∂PW

∂T1
∂WFE

∂T1
∂yS

∂T2
∂PW

∂T2
∂WFE

∂T2
∂yS

. . . . . . . . .

∂TI

∂PW

∂TI

∂WFE

∂TI

∂yS

⎤
⎥⎥⎥⎥⎦ (14)

where I is the total number of measurements. The elements
of the sensitivity matrix are called the sensitivity coefficients.
The sensitivity coefficient Jij is thus defined as the first deriv-
ative of the calculated temperature at position yi with respect
to the unknown parameter Pj ,Pj ∈ P = {PW,WFE, yS}: Jij =
∂Ti/∂Pj .

The success of this estimation procedure is associated with
the choice of λk and the information contained in the sensitiv-
ity matrix. The sensitivity matrix plays a fundamental role in
the parameter estimation. In fact, when the sensitivity coeffi-
cients are small, we have |J TJ | ≈ 0 and the inverse problem is
ill-conditioned. It can also be shown that |J TJ | is null if any
column of J (P ) can be expressed as a linear combination of
the other columns. Therefore, it is desirable to have linearly-
independent sensitivity coefficients Jij with large magnitudes.
In that case, the inverse problem is not very sensitive to mea-
surement errors and accurate estimates of the parameters can be
obtained.

In problems involving parameters with different orders of
magnitude, the sensitivity coefficients with respect to the vari-
ous parameters may also differ by several orders of magnitude,
creating difficulties in their comparison and identification of
linear dependence. These difficulties can be alleviated through
the analysis of their dimensionless sensitivity coefficients or
normalized sensitivity coefficients defined here as:

XPW
= PW

∂T

∂PW

XWFE = WFE
∂T

∂WFE

XyS
= yS

∂T

∂yS

(15)

These normalized sensitivity coefficients have the units of
the temperature; hence, their effect on the temperature field is
easier to analyze.

4.2. Sensitivity coefficients calculus

For the sensitivity coefficients calculus, we have three meth-
ods [20]. Here, a central difference method is used to estimate
the sensitivity coefficients, for example:

Ji(PW )

= Ti(PW + ε′PW,WFE, yS) − Ti(PW − ε′PW,WFE, yS)

2ε′PW
(16)

where Ti(PW + ε′PW,WFE, yS) and Ti(PW − ε′PW,WFE, yS)

are the calculated temperatures for the parameter PW with a
little variation ε′PW . Few values of ε′ have been investigated
(10−6 � ε′ � 10−1) and our choice is ε′ = 0.005.

The code Femlab is a multiphysic code which allows to solve
coupled PDE’s systems. So, we have defined seven systems:
one for the direct problem and six for each perturbed prob-
lems (PW + ε′PW,PW − ε′PW,WFE + ε′WFE,WFE − ε′WFE,

yS + ε′yS, yS − ε′yS). After the definition of these seven sys-
tems in femlab, we save this definition in a matlab file (*.m).
Then, an optimization algorithm has been implemented in this
file.

4.3. Parameter sensitivity analysis

The distribution of normalized sensitivity coefficients com-
puted are plotted in Figs. 5–7.

First, we remark that the evolution of the normalized sen-
sitivity coefficients PW (Fig. 5) are similar to the temperature
evolution (Fig. 4). In fact, due to our linear hypothesis when
the normalized sensitivity coefficients are calculated, we ob-
tained the temperature field. The sensitivity coefficient PW can
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Fig. 5. Normalized sensitivity coefficient for PW .

Fig. 6. Normalized sensitivity coefficients for yS .

be computed by the derivation of the linear conduction equation
by PW : JPW

= ∂T /∂PW . The main equation becomes:

C
∂JPW

∂t
= λ�JPW

+ ∂S

∂PW

where
∂S

∂PW

= 1

W 2
FE

exp

(
−

(
x2 + (y − yS)2

W 2
FE

))
(17)

When the normalized sensitivity is calculated by multiplying
JPW

by PW , this previous equation gives the heat conduction
equation. So the normalized sensitivity coefficient field is simi-
lar to the temperature field.

We note the normalized sensitivity coefficient is twice less
influent at x = 2.5 mm than at x = 0 mm. The maximum value
of XPW

at x = 2.5 mm is about 1200 ◦C. These values seem to
be sufficient to perform the PW identification because they are
bigger than the measurement errors.

Second, for the yS normalized sensitivity coefficient, the
magnitude is large near the real value of yS (Fig. 6). Before
this position (y � yS) the normalized sensitivity coefficients
are negative and the maximum value is around −3500 ◦C. For
values y � yS the maximum value is around 900 ◦C. So the es-
timation seems to be possible due to the magnitude of these
coefficients. We note that this coefficient is proportional to
−∂T /∂y in x = 2.5 mm (at y ≈ 0.0166 m, we have Tmax and
∂T /∂ys |T =Tmax = 0).
Fig. 7. Normalized sensitivity coefficient for WFE .

Fig. 8. Evolution of the ratios XWFE /XPW
and XyS

/XPW
at 2.5 mm from the

source axis.

At last, for the WFE coefficients (Fig. 7), the sensitivity at
x = 0 mm is large. But, if we move away from this position,
the sensitivity falls down XWFEmax

(x = 0 mm) ≈ −1000 ◦C and
XWFEmax

(x = 2.5 mm) ≈ 4 ◦C. With the measurement errors
equal to ±3%–4% of measured temperature, it seems to be dif-
ficult to estimate the WFE value. Here again, we can note that
this coefficient is proportional to ∂T /∂ys . So, this coefficient
seems to be linearly dependent to the yS coefficient.

With these three coefficients at x = 2.5 mm, we notice the
coefficients tend to zero when we go away to the source po-
sition. So the estimations could be improved near this position
with the measurements in x = 2.5 mm. Another approach to de-
fine the estimation domain is to compute the ratio between the
normalized sensitivity coefficients.

4.4. Definition of the estimation domain

One way to study the dependence/no dependence between
parameters is obtained by computing the ratio of the normalized
sensitivity coefficients. In fact, if two parameters are dependent,
the ratio is equal to a constant. Three ratios have been calculated
for the three parameters. The evolution versus the longitudinal
axis is reported in Figs. 8 and 9.

The ratio XWFE/XPW
(Fig. 8) shows that the two parameters

are independent between y = 0.01 m and y = 0.02 m (around
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Fig. 9. Evolution of the Normalized sensitivities XyS
and XWFE at 2.5 mm

from the source axis.

the source position yS = 0.015). Out of this interval, the ratio is
equal to a constant. The same observation is made for the ratio
XyS

/XPW
(Fig. 8). The two parameters are independent in the

same interval.
In Fig. 9, the two normalized sensitivity coefficient distri-

butions XyS
and XWFE are plotted. The normalized sensitivity

coefficients XWFE has been multiplied by a coefficient defined
by the maximum absolute value of XyS

divided by the maxi-
mum value of XWFE . We can note that the two parameters are
totally dependent along the longitudinal axis. Due to this be-
havior for these two parameters at x = 2.5 mm, simultaneous
identification of yS and WFE by Levenberg–Marquardt is not
possible.

In conclusion, the identifications seem to be possible in the
domain around the source position for the couples (PW,yS ) and
(PW,WFE). The large magnitude of their sensitivity coefficients
(except for WFE) and their independence from each other allow
a good estimation. The identification of WFE , the “diameter of
the beam welding”, will not be enterprise due to the low sensi-
tivity and it dependence with the source position yS . In the next
section, the Levenberg–Marquardt algorithm is presented and
some numerical cases of the parameters estimation are shown.

5. Numerical applications: Estimation of the source
parameters

In the previous chapter, estimation of “beam welding diam-
eter” WFE has appeared impossible. So, in the following, the
parameter estimations have been done for two couples of two
parameters: (PW ,yS), (PW ,WFE) (the third parameter WFE or
yS respectively is assumed to be known). The goal of this pre-
liminary study is to verify the feasibility of the estimation or the
non-feasibility.

5.1. The Levenberg–Marquardt algorithm

For these works, the Levenberg–Marquardt algorithm is
used [20]:

Assume that the temperature measurements Yi are given at
each abscissa yi, i = 1, . . . , I . We choose an initial set of para-
meters P 0 = {P 0 , y0}, {P 0 ,W 0

FE} and an initial value for the
W S W
damping parameter λ0 = 0.001. The iteration number is initial-
ized (k = 0). Then,

Step 1: Solve the direct problem with the available estimate
P k in order to obtain the temperature vector T (P k) =
(T1, T2, . . . , TI ).

Step 2: Compute S(P k) from Eq. (12).
Step 3: Compute the sensitivity matrix J k defined by Eq. (14)

and then the matrix Ωk = I , by using the current val-
ues of P k .

Step 4: Calculate the new set of estimate P k+1 from Eq. (13):

Remark. Here, theoretical measurements with no noise are
used, so W = I (the identity matrix).

Step 5: Solve the direct problem with the new estimate P k+1

in order to find T (P k+1). Then compute S(P k+1), as
defined in step 2.

Step 6: if S(P k+1) � S(P k), replace λk by λk+1 = 10λk and
return to step 4.

Step 7: if S(P k+1) � S(P k), accept the new set of estimate
P k+1 and replace λk by λk+1 = 0.1λk . Check the stop-
ping criteria. Stop the iterative procedure if it is satis-
fied; Otherwise, replace k by k + 1 and go to step 3.

Remark about the stopping criterion:
It exists three formulation for the stopping criteria [20], we

have chosen the following stopping criterion.
This criterion consists on testing if the least square norm is

sufficiently small: S(P k+1) � εstop, which is expected to be in
the neighborhood of the solution.

5.2. Study of the estimation feasibility

Several cases are investigated:

Case #1: Identification of the power PW and the source posi-
tion yS .

Case #2: Estimation of the power PW and Electron Beam (EB)
parameter WFE (with WFE = √

φE/8 ).

The values P 0
W = 5000 W m−1, W 0

FE ≈ 0.00176 (φE =
5 mm) and y0

S = 0.01 m are used as initial guess for the each
cases of the inverse heat transfer problem. The damping para-
meter λ0 is set to 0.001. Moreover, the value of yS and WFE are
constrained. First, the value of yS is taken between ymin = 0.01
and ymax = 0.02 because the fused zone is lower to 0.01 m. On
the electron beam diameter, we impose constraints: for the WFE

values less than 5e−5 (φE = 0.15 mm), Femlab cannot solve
efficiently the direct problem because the source is too focal-
ized for the meshgrid. A superior limit is also taken to 10 mm
because the experimental EB diameter φE is near to 1 mm.

Fig. 10 shows the decreases of the cost function. The thresh-
old of 10−6 is reached for the cases #1 and #2 after 8–9 itera-
tions.

For the case #1, the sensitivity coefficients of PW and yS

are large and the good values are obtained easily. The two pa-
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Fig. 10. Evolution of the cost function with the number of iteration.

Fig. 11. Evolution of PW parameter in function of iteration number.

Fig. 12. Evolution of yS parameter in function of iteration number.

rameters (Figs. 11 and 12) converge in the same time to the
good values. After 8 iterations, the cost function is around
10−6 which corresponds to an average measurement error of
3.5 × 10−5 ◦C.

For case #2, the maximum of the PW sensitivity coefficient
is 300 times bigger than the one of the EB parameter WFE . Nev-
ertheless, the good values are reached after 2 iterations for PW

and 6 iterations for WFE (Fig. 13). The cost function is around
10−6 for the iteration 8.
Fig. 13. Evolution of electron beam parameter in function of the number of
iterations.

The two identification cases are possible in this paragraph:
either the simultaneous identification of the power PW and the
source position yS or the power PW and the electron beam para-
meter WFE . So, we shall work on the identification of power and
the source position because of their high sensitivities contrarily
to the electron beam parameter. The influence of parameter er-
rors on the estimations are studied in the following paragraph.

5.3. Influence of the parameter errors on the estimations

Four cases are studied in this paragraph. Each cases consist
in the resolution of the inverse heat transfer problem by using
measurements with errors. These errors become from few ori-
gins: noise measurements due to the acquisition, error on the
electron beam parameter choice and error on the sensor loca-
tion. Generally, all these errors are present in the experimental
measurements. Thus, the four studied cases are:

Case 3: Identification of PW and yS with the electron beam
(EB) parameter value fix to WFE ∼ 0.0007 (or φE =
2 mm) instead of WFE ∼ 0.00035 (or φE = 1 mm)
which has been used to obtain the exact data.

Case 4: PW and yS are estimated from exact measurements in
x = 2.4 mm and estimated in x = 2.5 mm.
The case 5 consists in evaluating the influence of
noise measurements on the parameter estimations. The
noised temperatures are obtained by adding a stan-
dard noise deviation: Tnoised = Texa + 0,04 ×μ× Texa
where μ is a random number between [−1,1].
Finally, case 6 studies the influence of these three
mixed errors.

The results of the estimation procedure are summarized in
Table 1. In the case 3, the cost function decreases to a lower
value predicted for the threshold than the three others cases. The
reached thresholds are predicted by calculating the quadratic
sum of the difference between perturbed and exact tempera-
tures:

SThres = [Yi − Ti]T[Yi − Ti] =
∑

(Yi − Ti)
2 (18)
i
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Table 1
Final values of the four parameter estimations

PW [W m−1] yS [m] k SThres/S(P k)

estimated
Integral energy
[W]

Good
values

60000 0.015 94248

Case 3 59999.996 0.01509 8th 3302/1.63 × 10−6 94248
Case 4 60872.048 0.014954 6th 57110/57088.3 95618
Case 5 59748.78 0.014991 7th 487690/486007.7 93853
Case 6 60804.27 0.015003 6th 544480/521080.4 95511

where Yi = Ti (PWexa, ySexa,WFE = 1 mm) is the exact data
and Ti = T (PWexa, ySexa,WFE = 2 mm) (case 3), Ti = T

(PWexa, ySexa;x = 2.4 mm) (case 4), Ti = Tnoised (case 5) or
Ti = Tnoised (PWexa, ySexa;x = 2.4 mm; WFE = 2 mm) (case 6)
are the perturbed data. The cost function for the cases 4, 5 and 6
have decreased rapidly to their respective predicted threshold
and stabilizes (less than 8th iterations, Table 1).

The energy integral is well identified in each cases (Table 1).
It is defined so:

IEnergy =
∫∫

S(x, y)dx dy

=
∫∫ (

PW

W 2
FE

exp

[
−x2 + (y − yS)2

W 2
FE

])
dx dy (19)

The most accurate is achieved with the error on EB parame-
ter WFE (case 3). This error does not exceed 1.5% of the good
value.

The power PW and the source position yS are well estimated
for the four cases. The power PW is the less accurate. The power
density and the source position are very sensitive to the sensor
position. An error of 1 mm for the source position gives errors
of 1.5% for the power and 0.2% for the source position yS . The
power is so overestimated and the source position is located
forward to the good value. In the case 5, noised measurements
lead to underestimated power.

Finally, the study of these four cases shows that the esti-
mation of power and source position is possible with a good
accuracy. Sensor location errors, measurement errors or elec-
tron beam diameter errors do not prevent the estimation of
the PW and yS parameters. That shows the robustness of the
Levenberg–Marquardt method.

5.4. Conclusion

In this chapter, numerical results have been presented. We
have seen that the identification of power and the source po-
sition is realizable whereas the identification of the electron
beam diameter is impossible due to its low sensitivity and its
dependence with the source position parameter. In each investi-
gated cases: electron beam diameter errors, measurement errors
or sensor position errors do not prevent a good estimation. To
perform the identification from experimental measurement, we
must choose a value for the electron beam diameter. This choice
can be done after having solved the inverse heat transfer prob-
lem with different value of WFE . In the last chapter, experimen-
tal measurements are used for the parameter identifications.
Table 2
The temperature measurement positions

x (m) z (m)

Measure R26 0.0023 0.0098
Measure R04 0.0023 0.0223
Measure R06 0.0018 0.0348
Measure R20 0.0023 0.047
Measure R19 0.002 0.0523
Measure R16 0.0011 0.0673

6. Experimental identification of the source

The measured temperatures used in this chapter come from
an experiment realized with the Electron Beam welding process
of the DCN-Propulsion Indret, France (44). This experiment is
presented in the thesis of Jialin Guo [21]. The experimental pa-
rameters are: The tension U = 60 kV, the current Ib = 0.29 A,
the velocity V = 2.5 mm s−1. In this experiment, the measure-
ments are realized in the Heat Affected Zone with 93 type K
thermocouples. Here, we use only 6 of them for the validation
of the estimation method. Table 2 shows the thermocouple po-
sitions.

The aim of this chapter is the identification of the experi-
mental value of PW and yS . The electron beam parameter is
chosen to WFE ≈ 0.000353 (φE = 1 mm). The initial set of the
parameters is again the one used for the previous numerical ap-
plications: PW = 5000 W m−1, yS = 0.01 m.

6.1. Results of the parameter estimation

The inverse problem is solved until the cost function is sta-
bilized or the criterion ‖P k+1 − P k‖/‖P k‖ � εstop is validated
(εstop = 1%).

Fig. 14 shows the evolution of the cost function for an elec-
tron beam parameter WFE ≈ 0.000353 (φE = 1 mm). Table 3
gives the results of the PW and yS estimations. For the depths
z = {2.23 cm;3.48 cm;4.7 cm;5.23 cm} the cost function sta-
bilizes about 106. All power PW and source position yS val-

Fig. 14. Evolution of the cost function for the different temperature measure-
ments.
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Fig. 15. Comparison between measured and calculated temperatures (R16 is
located at x = 1.1 mm and z = 67.3 mm and R04 is situated at x = 2.3 mm and
z = 22.3 mm).

Table 3
Estimated values for the parameters with φE = 1 mm

PW [W m−1] yS [m]

Measure R26 56381.3 0.017
Measure R04 58270.6 0.0166
Measure R06 57938.2 0.0164
Measure R20 52264.3 0.0167
Measure R19 51051.7 0.016
Measure R16 39943.9 0.014

ues are quite the same: 52000 W m−1 (z ∼ 5 cm) � PW �
58000 W m−1 (z � 4 cm) and yS ≈ 0.0165 m. Fig. 15 shows
the comparison between the experimental and calculated tem-
peratures.

Excepted for the maxima of the temperature, we find a good
agreement between the measured and calculated temperatures
especially during the heating and cooling phases of the thermal
cycles. Consequently in this central zone of the welding strand,
the 2D quasi-steady model (x, y) and the Gaussian source mod-
elise quite well the heat transfer.

On the other hand, at the foot (z ∼ 67.3 mm) and the head
of the weld strand (z ∼ 9.8 mm), we have difficulties to fit
the thermal cycle. At the foot of the weld strand, the Fig. 15
shows a good agreement between measured and calculated ki-
netics until y � 25 mm. Beyond we have a cooling temperature
measured faster than calculated temperature probably due to the
matter below the weld strand which pumps the heat. The bidi-
mensional model is not valid. The estimated power PW seems
to be good and is less than the values estimated in the mid-
dle of the weld strand. The estimated source position yS at
the foot of the weld strand let thinking that the electron beam
is sloped forward. This analysis is unrealistic. As a matter of
fact the delay of the source in the central weld strand is prob-
ably due to convective movements of the liquid matter which
throw again the energy at the back of the electron beam. It is
observed at the head of the weld strand where the convective
movements are more important. A throwing up of fused matter
at the back brings heat to the surface. This heat is dissipated ei-
ther by heat radiation transfer towards the exterior surroundings
or by conduction. That is why the bidimensional quasi-steady
Fig. 16. Comparison between measured and calculated temperatures at
(x = 2.3 mm; z = 9.8 mm).

Table 4
Estimated values for the temperature measurement R26 with different electron
beam diameter

PW yS S(P k) final φE

Measure R26 56381.3 0.017 6.69×106 1 mm
Measure R26 58391.4 0.0176 3.53×106 7 mm
Measure R26 66680.5 0.0179 1.19×106 12 mm

model cannot represent correctly the phenomena. It is shown in
Fig. 16 where we compare measured and calculated kinetics for
measurements at the head of the weld strand. Due to the con-
vective energy contribution at the back of the electron beam the
experimental kinetic is hotter at cooling. In reality, near to the
surface, we should modelise the source with a decentred ellip-
soid Gaussian instead of a circular Gaussian. However, we tried
few values of electron beam diameter to validate our Gaussian
model: WFE = {3.53 × 10−4; 2.32 × 10−3; 4.2 × 10−3} (φE =
{1 mm,7 mm,12 mm} respectively). Table 4 shows that the
cost function decreases when the electron beam diameter in-
creases. At the same time, the source position moves back and
the power increases. This result confirms the hypothesis of the
rejected energy at the back of the electron beam. Nevertheless
this increase of the diameter is limit: in Fig. 16 the temperature
calculated for φE = 12 mm rises faster than the measured tem-
peratures. Large diameters produce a premature augmentation
of the temperature at the front of the electron beam.

6.2. Conclusions

The identification results show that the power and the source
position remain constant in the middle of the weld strand. It
could signify that the assumptions of our modeling are suffi-
cient in this part of the weld strand. For the top and the bottom
of the weld strand, it is quite different. At the top of the weld
strand, we did not happen to modelise the cooling phase of the
temperature evolution with the longitudinal axis, a contrario, at
the foot of the weld strand, we overestimate the cooling phase.
At the top, we neglect the convective movement of the liquid
metal that can be the cause of the underestimation of the cooling
phase whereas at the bottom, the mass of metal under the weld
strand absorbs the heat that refreshes more rapidly. Typically,
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value of 52–58 kW m−1 for the power and a source position of
0.0165 m are estimated in the middle of the weld strand. The
power value is near than the one proposed from experimental
data.

7. Conclusions

In this work, we have presented the electron beam weld-
ing process. The thermo-metallurgical modeling of the process
needs the knowledge of heat source generated by the electron
beam. After having presented the complete modeling of the
process, we have assumed that the parameters are no temper-
ature dependent. In fact, this assumption is done for the reso-
lution of the inverse heat transfer problem of identification of
the heat source. The method used to solve the inverse prob-
lem has been developed, first, by Levenberg then modified by
Marquardt. This method needs a sensitivity analysis before be-
ginning the resolution of the inverse problem. The sensitivity
analysis has shown that temperature measurements located at
2.5 mm from the source line does not allow the identification of
the electron beam parameter WFE . So the theoretical identifica-
tions have consisted in the estimation of the power PW and the
source position yS .

For the experimental estimations, we show that the 2D quasi-
steady state model and the Gaussian source represent well the
phenomena in the middle of the weld strand. On the other hand,
near the head of the weld strand, the phenomena are more com-
plicated to modelise. We should take a tridimensional model
with an ellipsoidal source. Moreover, a 3D non-linear ther-
mometallurgical model should be developed. The difficulty is
to define correctly the formulation of the source.

This study has shown the feasibility of use of the Levenberg–
Marquardt method for the identification of the heat source.
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